
A RDF-based Data Integration Framework
Amineh Amini1, Hadi Saboohi2, Nasser Nematbakhsh3

1,2 Department of Computer Engineering,

Islamic Azad University, Karaj Branch, Karaj, Iran
{aamini, saboohi} @kiau.ac.ir

3 Department of Computer Engineering,

Faculty of Engineering, University of Isfahan, Isfahan, Iran
nemat@eng.ui.ac.ir

Abstract
Data integration is one of the main problems in distributed data sources. An approach is to provide an
integrated mediated schema for various data sources. This research work aims at developing a framework for
defining an integrated schema and querying on it. The basic idea is to employ recent standard languages and
tools to provide a unified data integration framework. RDF is used for integrated schema descriptions as well as
providing a unified view of data. RDQL is used for query reformulation. Furthermore, description logic
inference services provide necessary means for satisfiability checking of concepts in integrated schema. The
framework has tools to display integrated schema, query on it, and provides enough flexibilities to be used in
different application domains.

Keywords
Data Integration, Semantic Web, RDF, RDQL, Query Reformulation, Description Logic (DL)

1. Introduction
Data integration is the problem of combining the data
residing at different, heterogeneous sources and providing
the user with a unified view of this data, called mediated
schema, which can be queried by users. A data
integration system frees the user from the knowledge of
where and how data are represented in the sources. The
interest in this kind of systems has been continuously
increased in recent years by the fact that many
organizations face the problem of integrating data
residing in several different sources. Specifically
companies that build data warehouses, doing data mining
and developing Enterprise Resource Planning systems
must address this problem. Also, integrating data in the
World Wide Web is a subject of several investigations
and projects nowadays [1]. Using Semantic Web
concepts and services for data integration brings new
possibilities and challenges. For example adding semantic
to the data makes them processable by computer agents.
Also it is possible to check for consistency of concepts in
the integrated schema.

Early works on integration were carried out in the
context of database design, and focused on the so-called
schema integration problem, i.e. designing a global,
unified schema for a database application starting from
several sub schemata, each one produced independently
from the others [2]. More recent efforts have been
devoted to data integration, which generalizes schema
integration by taking into account actual data in the
integration process. Here the input is a collection of

source data sets (each one constituted by a schema and
actual data), and the goal is to provide an integrated and
reconciled view of the data residing at the sources,
without interfering with their autonomy [3]. We only deal
with the so-called read-only integration, which means
that such a reconciled view is used for answering queries,
and not for updating information.

Data integration can be either virtual or materialized.
In the first case, the integration system acts as an
interface between the user and the sources [4], and is
typical of multi-databases, distributed databases, and
more generally open systems. In virtual integration, query
answering is generally costly, because it requires
accessing the sources. In the second case, the system
maintains a replicated view of the data at the sources [5],
and is typical, for example, both in information system
re-engineering and data warehousing. In materialized data
integration, query answering is generally more efficient,
because it does not require accessing the sources, whereas
maintaining the materialized views is costly, especially
when the views must be up-to-date with respect to the
updates at the sources (view refreshment). In the rest of
this paper, we do not deal with the problem of view
refreshment.

There are two basic approaches to the data integration
problem, called procedural and declarative. In the
procedural approach, data are integrated in an ad-hoc
manner with respect to a set of predefined information
needs. In this case, the basic issue is to design suitable
software modules that access the sources in order to
fulfill the predefined information requirements. Several
data integration (both virtual and materialized) projects,

such as TSIMMIS [6], Squirrel [7], and WHIPS [8]
follow this idea. They do not require an explicit notion of
integrated data schema, and rely on two kinds of software
components: wrappers that encapsulate sources,
converting the underlying data objects to a common data
model, and mediators that obtain information from one or
more wrappers or other mediators, refine this information
by integrating and resolving conflicts among the pieces of
information from the different sources, and provide the
resulting information either to the user or to other
mediators. The basic idea is to have one mediator for
every query pattern required by the user, and generally
there is no constraint on the consistency of the results of
different mediators.

In the declarative approach, the goal is to model the
data at the sources by means of a suitable language, to
construct a unified representation, to refer to such a
representation when querying the global information
system, and to derive the query answers by means of
suitable mechanisms accessing the sources and/or the
materialized views. This is the idea underlying systems
such as Carnot [9], SIMS [10] and Information Manifold
[11]. The declarative approach provides a crucial
advantage over the procedural one: although building a
unified representation may be costly, it allows
maintaining a consistent global view of the information
sources, which represents a reusable component of the
information integration systems [12].

In this research a declarative approach is adopted and
two services namely conceptual modeling of the domain
and querying on it are of main concerns. Following
technologies are used for that purposes:

1. RDF [13] is used for integrated schema description
as well as providing a unified view of data. RDF has a
well-defined syntax and data type. Also it has reasonable
processing complexity.

2. Description Logic (DL) [14] is used to find any
contradiction in the integrated schema (satisfiability of
concepts in DL terms). It has well-defined semantic and
decidable routines for basic services like satisfiability,
which makes it suitable for knowledge representation and
reasoning in this domain. We adopt the result of works on
DL for databases [15] in this research.

3. RDQL [16] is used for re-formulation of queries. It
is a query language for RDF in Jena [17] and provides a
data-oriented query model.

The paper is organized as follows. In Section 2, we
describe in more detail our framework for data
integration based on RDF. In Section 3, implementation
of the framework is explained and Section 4 is
conclusion.

2. Data Integration Framework
Aims of any data integration systems are to build an
integrated view of the data defined in various sources and
develop a mechanism for data extraction from it. To do
so, the framework shall provide following services:

1. For system administrator, it provides facilities to
define data sources and integrated schema.

2. Satisfiability checking on integrated schema.
3. For user, displaying integrated schema in various

formats (e.g. Entity Relationship model) and mechanism
for query execution.

Following a short overview of the framework and its
components are described in separate subsections.

In this framework, system administrator defines
required data sources as well as integrated schema. Those
descriptions are converted to DL statements and are
checked for satisfiability. Users can see a visual display
of integrated schema and submit their queries. To respond
to such queries, system extracts data from various
sources, combines them into an integrated data collection,
then executes query on it and returns results to the user.

In this framework, wrapper-mediator model [12] for
data integration is used. Also in the current
implementation, two types of data sources namely
database type (relational) and xml type (hierarchical) can
be specified.

2.1. System Components
Components of the model and their relationships are
shown in Fig. 1. An explanation for components follows.

2.1.1. Data Source Descriptor File
System administrator defines data sources that are subject
of integration. For data sources of database type, URL,
username and password together with descriptions of
required tables are specified. It is also possible to define a
table as a view on database.

If the data source type is "XML Data", local path or
URL is specified, and typically an XSL Transformer [18]
as a wrapper for converting to the appropriate structure (if
needed) is definable.

2.1.2. Integrated Schema Descriptor File
Following a relational view of data, integrated schema is
defined in the form of (virtual) tables. Each field of such
tables can be related to a field in a defined data source.
Also, relationships between tables are defined here. These
relations can be equality of two fields or two field sets as
well as equality relations of one field with a set of fields
by equations like mathematical addition or string
concatenation.

2.1.3. Satisfiability Checker
Integrated schema descriptor file may have contradictory
definitions. This module, checks definitions and reports
any of such contradictions. In this framework, reasoning
procedure as explained in [12] is used.

2.1.4. Display Integrated Schema
Integrated schema in Entity-Relationship (ER) diagram
and XML formats are displayed. In ER-diagrams, tables,
fields and relations between tables are shown graphically.
In XML format, in addition field’s data types are
specified too.

SQL to RDQL Converter
For query processing, RDQL is used internally. Database
users, however, prefer SQL queries. Therefore in this
framework, "SQL to RDQL Converter” module is used to
convert SQL to RDQL queries. Following algorithm is
employed in it:

SQL to RDQL Converter Algorithm:
INPUT: a SQL statement over integrated schema.
OUTPUT: a corresponding RDQL statement
METHOD:

1- Create a unique name for any table in SQL query
(in “?tableName” form).

2- For the fields in SELECT clause of SQL query, add
them to RDQL query with a "?" sign before them.

3- For all the fields appearing in the query, create a

property name. A property name is in the
“http://integratedDB/integratedTableName#fieldName”
format. Having property names, each field is represented
as a triple in the WHERE clause of RDQL query. Triples
are in “(?tableName propertyName ?fieldName)” format.

4- Finally, conditions in WHERE clause is added to
the AND part of RDQL query.

For an example, conversion of following SQL
statement to corresponding RDQL statement is
demonstrated in Fig. 2:

SELECT STUDENT.FIRSTNAME,
STUDENT.LASTNAME,
GRADE.AVERAGE,
STUDENT.DEBT

FROM STUDENT, GRADE
 ON STUDENT.ID=GRADE.STUDENTID
WHERE STUDENT.DEBT>2000

Fig. 2. SQL to RDQL conversion steps

Fig. 1. Components of the model

RDQL

RDQL SQL

XML
&
RDF

RDF

RDF

XML XML

Wrapper 1 Wrapper n

Data Extractor & Integrator

Integrated
Schema
Descriptor
File

Data
Source 1

Data
Source n

 Data
Source
Descriptor
File 1

System
Administrator Data

Source
Descriptor
File n

SQL to
RDQL
Converter

User

Query Processor

Display
Integrated
Schema

Satisfiability
Checking

Step 1 creates following unique names: ?tbl_0, ?tbl_1
Step 2 results in: SELECT ?FIRSTNAME, ?LASTNAME, ?AVERAGE, ?DEBT
Step 3 creates following WHERE clause:
WHERE

(?tbl_0 <http://integratedDB/STUDENT#FIRSTNAME> ?FIRSTNAME),
(?tbl_0 <http://integratedDB/STUDENT#LASTNAME> ?LASTNAME),
(?tbl_1 <http://integratedDB/GRADE#AVERAGE> ?AVERAGE),
(?tbl_0 <http://integratedDB/STUDENT#DEBT> ?DEBT),
(?tbl_0 <http://integratedDB/STUDENT#ID> ?fld_0),
(?tbl_1 <http://integratedDB/GRADE#STUDENTID> ?fld_0)

Step 4 adds following phrase to the AND clause of RDQL statement:
AND ?DEBT > 2000

In the current implementation, SQL statements with

aggregation functions, sub queries, and those having
expressions in SELECT and ORDER BY clauses are
ignored. Those constructs are subject of our future
extensions.

2.1.5. Query Processor
This module uses Jena API to execute RDQL query on a
RDF store that is dynamically created by data extractor
and integrator.

2.1.6. Data Extractor and Integrator
This module accumulates data from data sources and
makes an integrated RDF store from them. The data that
only is needed to respond to the user query is
accumulated. This is done by considering the table
specifications in the query and mapping them, using
integrated schema, to actual tables in data sources.
Following algorithm is used for this purpose:

Data Extraction and Integration Algorithm

1. Read the <Integrated Schema Descriptor (ISD)
File> and find all table definitions (ISD tables) and do all
following steps for each of them.

2. Make a new table in integrated data and name it
with the same name as the name of ISD, call this new
integrated data table as <IDT>

3. Read all ISD fields and do steps 4-7 for them
4. Name first ISD field as <master field>, and its data

source name as <master source> and its table name as
<master table>

5. Scan all <master table> rows in <master source>,
and do steps 6 and 7 for them

6. Read the value of all needed fields for ISD in
<master table> row, and add them in IDT with
appropriate name

7. For each field in ISD that its <source> and <table>
is different from <master field>, find a relation between
the source and table of it and the source and table of
<master field> and search for a row in that table that
meets this relation and add the value of requested field to
IDT

3. Implementation
The system is implemented as a toolkit in Java and
provides facilities for defining data sources as well as
integrated schema. Queries can be submitted both in SQL
and RDQL forms. If query is in SQL, it is first converted
to RDQL before submitted to the query processor which
executes the RDQL query using Jena. Results can be
stored as XML and RDF. A RDF data model can be
generated by Jena APIs from the output of "Data
extraction and integration algorithm" which also can be
subject of user queries. In what follows, main parts of the
system are explained.

First step is to create a new "integration project" as
shown in Fig. 3.

Fig. 3. Integration system main form

Data sources should be defined. Currently the system

accepts data sources of type database and xml. Also, as
shown in the figure, user can specify the integrated
schema location and use “Edit” button to make changes
to it, if needed.

For database sources, a wrapper description editor
form is used as shown in Fig. 4. Following JDBC
conventions, this form contains fields for defining
connection properties. There are two methods for
defining data which are subject to integration. One
method is to directly refer to database tables and fields.
Alternatively, it is possible to create a virtual view by
using a query statement.

Fig. 4. Defining a database as a data source

If the data source is as a "XML Data", these data can
be viewed (Read only) as shown in Fig. 5.

Fig. 5. Viewing "XML Data"

After defining data sources, integrated tables and

fields should be defined and relations specified. One
example is shown in Fig. 6.

Fig. 6. Integrated schema definition

Finally, having all definitions, user can submit queries

and see the results in a grid which can be saved as XML
and RDF. One example is shown in Fig. 7.

Fig. 7. Query on integrated data

In this form, total time for data extraction and
integration and query execution is displayed too.

4. Conclusion
This paper explained a RDF-based framework for data
integration. This framework provides some basic services
which can be used for data integration and management
of different data sources. These services include
satisfiability checking of definitions, displaying data
model of integrated schema, query facilities in SQL and
RDQL formats and data extraction in XML and RDF
formats.

RDF makes it possible to integrate data from different
data source types. Also a well-defined query language,
RDQL, makes it possible to make queries on such a data
model. Jena provides necessary APIs to work on RDF
data and execute queries. Therefore we believe the
implemented system and idea behind it have many
advantages over traditional data integration framework. It
is worthwhile to mention that end users (programmers)
view the integrated data as like a relational database and
can query them using SQL statements, thought, the
original sources might not be of type relational data.

One challenge we have now is to make SQL to RDQL
converter as general as possible. When such a conversion
is fully implemented, there should be no limit on the
kinds of queries a user may submit to this system.

Another extension we like to work on is to cache
intermediate data extracted from sources. Such
intermediate data might be useful for responding to other
users’ queries. In a real data integration environment this
seems to be very useful, considering the fact that data
sources might be residing in different distant physical
locations.

References
[1] Diego Calvanese, Giuseppe De Giacomo, Maurizio

Lenzerini, Description Logic for Information Integration,
Universita di Roma "La Sapienza"

[2] Batini, C., Lenzerini, M., & Navathe, S. B. (1986). A
comparative analysis of methodologies of database
schema integration. ACM Computing Surveys, 18(4),
323-364

[3] Ulman, J. D. (1997). Information integration using logical
views. In Proc. of the 6th Int. Conf. on Database Theory
(ICDT-97), Lecture Notes in Computer Science, pp. 19-
40. Springer-Verlag.

[4] Sheth, A. & Larson, J. (1991). Federated database
systems for managing distributed, heterogeneous, and
autonomous databases. ACM Computing Surveys, 22(3).

[5] Inmon, W. H. (1996). Building the Data Warehouse
(second edition). John Wiley & Sons.

[6] Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland,
K., Papakonstantinou, Y., Ulman, J., & Widom, J. (1994).
The TSIMMIS project: Integration of heterogeneous
information sources. In Proc. of IPSI Conference
(IPSI'94).

[7] Hull, R. & Zhou, G. (1996). A framework for supporting
data integration using the materialized and virtual
approaches. In Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, pp. 481-492.

[8] Hammer, J., Garcia-Molina, H., Widom, J., Labio, W., &
Zhuge, Y. (1995). The Stanford data warehousing project.
IEEE Bulletin of the Technical Committee on Data
Engineering, 18(2), 41-48.

[9] Huhns, M. N., Jacobs, N., Ksiezyk, T., Shen, W.-M.,
Singh, M. P., & Cannata, P. E. (1993). Integrating
enterprise information models in Carnot. In Proc. of the
Int. Conf. on Cooperative Information Systems (CoopIS-
93), pp. 32-42.

[10] Arens, Y., Chee, C. Y., Hsu, C., & Knoblock, C. A.
(1993). Retrieving and integrating data from multiple
information sources. Journal of Intelligent and
Cooperative Information Systems, 2(2), 127-158.

[11] Kirk, T., A. Y., Sagiv, Y., & Srivastava, D. (1995). The
Information Manifold. In Proc. of the AAAI 1995 Spring
Symp., on Information Gathering from Heterogenous,
Distributed Environments, pp. 85-91.

[12] Diego Calvanese, Giuseppe De Giacomo, Maurizio
Lenzerini, Daniele Nardi, Riccardo Rosati, Description
Logic Framework for Information Integration, Universita
di Roma "La Sapienza"

[13] Resource Description Framework (RDF), World Wide
Web Consortium Semantic Web Activity;
http://www.w3.org/RDF/ (November 2007)

[14] Franz Baader, Werner Nutt, Basic Description Logics,
Description Logic Handbook, pp. 47-100

[15] Diego Calvanese, Giuseppe De Giacomo, Expressive
Description Logics, Description Logic Handbook, pp.
184-225

[16] RDQL - A Query Language for RDF, World Wide Web
Consortium;
http://www.w3.org/Submission/2004/SUBM-RDQL-
20040109/

[17] Jena – A Semantic Web Framework for Java;
http://www.hpl.hp.com/semweb/jena.htm (November
2007)

[18] XSL Transformations (XSLT);
http://www.w3.org/TR/xslt

